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Generalizations and Schema Abstraction

Abstract

Three experiments were designed to differentiate two models of schema abstraction. One model,

called the generalization model, proposes that category generalizations, defined as feature

combinations which occur frequently across study items, are abstracted during learning and used to

classify transfer items. According to the other model, called the instance-only model, transfer items

are classified according to their similarity to studied items. Study materials were constructed which

either yielded category generalizations (generalize condition) or did not (control condition). Transfer

items differed on whether they were classifiable by category generalizations and on their similarity to

study items. In Experiments I and Ill, accuracy and confidence on transfer items was better in the

generalize condition than in the control condition. Experiment II manipulated the order in which

generalizable study items were presented for study: Items were either blocked, so that items

contributing to a category generalization occurred close in the study sequence, or randomly ordered.

Study items were learned faster and transfer performance was better with blocked presentation than

with random presentation. In all three experiments, there was an effect for the similarity of transfer

items to study material. There was some evidence suggesting an advantage for partially matching a

category generalization. The results support a schema abstraction model in which transfer is a

function of similarity to both specific category instances and to higher-order category information.

ACC8SS
1 on vor

DTIC TA
unantiouced

A..ilf .!i/or
D1% Pecial

Lil



Generalizations and Schema Abstraction

2

The Effects of Category Generalizations and Instance

Similarity on Schema Abstraction.

It is a ubiquitous phenomenon that people are able to detect regularities that characterize a

category of stimuli simply from experience with category members. The success of this inductive

process is not limited to well-defined categories, those for which a single rule or list of defining

attributes will always predict category membership. For most of the real-world categories, there may

be several complex rules governing membership, none of which is singularly predictive. We will call

the process by which people learn ill-defined categories from experience with exemplars schema

abstraction. We differentiate this process from concept identification only because this latter term

has traditionally denoted classification learning situations in which the categories are defined by a

single rule, often derived through explicit hypothesis testing. Since the acquired information

abstracted from ill-defined categories does not reduce to a simple, easily specified rule, the general

issue which concerns us is the nature of that information and how it is subsequently used to

differentiate category members from non-members. In the usual schema abstraction paradigm,

subjects first learn to classify a set of training items into one or more categories by trial and error.

They are then given a set of transfer items, items which they had not studied during training, to assign

to one of the categories they learned, usually without feedback. It is their performance on these

transfer items which allows us to infer something about the nature of the category information

acquired from experience with the initial set of training items.

Models of schema abstraction differ primarily in their conception of the nature of this information,

its representation, and its utilization to classify new exemplars. According to prototype models

(Posner & Keele, 1968; Franks & Bransford, 1971), a single representation of the category's central

tendency, called a prototype, is abstracted during learning as the average of the seen exemplars,

Instances are categorized according to how close they are to the prototype. This model accounts for

the abstraction phenomena that (a) never-studied category prototypes are more likely to be

recognized and correctly classified than other, never-studied items (Posner & Keele, 1968), (b) after

delay, never-studied category prototypes are better classified than much-studied training exemplars

(Posner & Keele, 1970), and (c) classification and recognition of new items is a function of the

distance that the item is from its category prototype (Bransford & Franks. 1971: Franks & Bransford.
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1971). These findings suggest two characteristics of the information abstracted from category

exemplars. First, it is abstracted during experience with the exemplars, rather than computed at test

time, since it is available after delay, while specific instance information is not. Second, the

availability of this information after delay also suggests it is qualitatively different than instance

information.

An alternative theory of schema abstraction is the view that the abstracted category information is

based on the frequency with which features and feature combinations occur across exemplars of a

category (Reitman & Bower, 1973; Neumann, 1974; Hayes-Roth & Hayes-Roth, 1977). We will refer to

these as strength or frequency models. Hayes-Roth and Hayes-Roth (1977) proposed that the

frequency of occurrence of all an exemplar's single features plus all possible combinations of these

features (called property sets) comprise the exemplar's representation. The frequency with which a

property set occurred among all the encoded exemplars of a category determines its associative

strength to that category. They propose that recognition of an exemplar is governed by the

associative strengths of its property sets to the category or categories studied. The diagnosticity of a

property set for a given category was defined as an increasing function of its associative strength to

that category and a decreasing function of associative strength to the alternative categories.

Stimulus sets can be created where instances which are farther from the central tendency or

prototype have higher property-set diagnosticity than instances which are closer to the prototype.

Hayes-Roth and Hayes-Roth demonstrated with such material that property set diagnosticity, not

prototypicality, predicted classification behavior.

As different as these models may seem, they share the assumption that some information,

qualitatively different from the representation of individual instances, is abstracted, stored, and

utilized in subsequent recognition and classification judgments. In contrast, Medin and Schaffer

(1978) argued that a model positing only one level of information, instance information, can account

for the previous schema abstraction results. In a series of experiments, they controlled the distance

of transfer items to the prototypes of two categories while manipulating the similarity of the transfer

items to individual category members. Medin and Schaffer demonstrated that the inter-item similarity

of training exemplars affected learning time and that subsequent recognition and classification

ratings of new instances were a function of their similarity to individual training exemplars, not of their
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distance from category prototypes. They propose that the item most similar to a new instance is

retrieved and its category assignment is used to classify the new instance.

Medin and Schaffer noted that the method of generating stimuli in most classification learning

experiments--creating category exemplars by applying distortion or transformation rules to the

category prototype--causes the prototype to be the transfer item most similar to members of its own

category and least similar to members of another category. Thus, the similarity-to-stored instances

model can account for superior performance on prototypes and items close to prototypes without

positing an additional, qualitatively different level of information. It can also account for the result that

prototype classification suffers little with delay, because even if some specific instances are forgotten,

other instances similar to the prototype will remain.

However, strength models of the feature-set variety can account for the data offered as evidence for

similarity-to-stored-instances models because they propose that individuai instances are augmented

with, not replaced by, higher-order category information. While Medin and Schaffer effectively

demonstrated the inadequacy of a prototype model of abstracted category information, their

experiments were not designed to contrast the assumptions of their similarity-to-stored-instances

model with the assumptions of strength models. The purpose of the present series of experiments is

to distinguish between an instance-only model which proposes that trdnsfer performance is a function

of similarity to stored exemplars and a particular strength model proposing that some higher-level,

qualitatively different information is abstracted from and represented in addition to specific instances,

and utilized to classify new items.

The model we are contrasting with the instance-only model is called the ACT generalization model,

based on Anderson's ACT theory (Anderson, 1976; Anderson, Kline, & Beasley, 1979), a model and a

computer simulation of declarative and procedural knowledge. Using general learning mechanisms

and assumptions not designed specifically for schema abstraction tasks, the ACT program

successfully replicated the recognition and classification results of Franks and Bransford (1971),

Neumann (1974), Hayes-Roth and Hayes-Roth (1977) and Medin and Schaffer (1978), given their

respective tasks and stimuli (Anderson et al.. 1979). However, having the generalization model

account for these results simply contributes another competing model to the already large set of

alternative schema abstraction theories. We designed the present experiments not simply to marshal



Generalizations and Schema Abstraction

5

support for the ACT generalization model, but to differentiate the predictions of an instance-only

model and frequency-based strength models, of which the ACT generalization model is one version.

The ACT Generalization Model

A generalization is a pattern of frequently co-occurring features in a set of data. While less specific

than any pattern seen, a generalization captures the regularities across specific items. For example,

we might learn that one member of Club 1 is single, Catholic, plays tennis, and works for the

government. We might subsequently learn that a second Club 1 member is single, Protestant, plays

tennis, and works for the government. While we would store both these specific feature patterns, the

generalization we would form that accommodates both these specific descriptions of Club 1 members

would be Club 1 members are single, play tennis, and work for the government. Since religion

differed in the specific descriptions, it is a variable feature in the generalization about Club 1

members. Note that, in addition to the original study instances, the model proposes that only one

feature set--the above generalization--is stored. A generalization must contain more constant

features than variable features. With this restriction, a 2-feature generalization such as Club 1

members are single and play tennis, while common to both descriptions, would not be formed. This

contrasts sharply with the Hayes-Roth and Hayes-Roth (1977) model, which predicts all feature

subsets will be stored. It should be obvious that, with only a moderate set of 4- or 5-featured stimuli,

the number of possible feature combinations would be enormous. The generalization model's

restrictive definition of a generalization acknowledges the limited capacity of short term memory and

attempts to make the most efficient use of it.

Each time a generalization successfully classifies a specific feature pattern, its representation in

memory becomes stronger, e.g., learning that another Club 1 member is Jewish, single, plays tennis

and works for the government reinforces the Club 1 members are single, play tennis, work for the

government generalization. According to the model, each time a pattern of features successfully

classifies an item, not only is it strengthened, but any pattern more general but still consistent with it is

also strengthened. For example, the first description single, Catholic, plays tennis, works for the

government could be classified on some later learning trial by matching the specific feature pattern,

(One Club 1 member is single, Catholic, plays tennis. works for the government), previously stored for

this item. This specific pattern would be strengthed. In addition, the generalization consistent with



Generalizations and Schema Abstraction
6

this pattern, (Club 1 members are single, play tennis, and work for the government), while not the

basis for this particular classification, would also be strengthened. Over time, then, a generalization

will accrue more strength than any of the specific patterns which generated it. In this manner,

particularly useful generalizations, those which are consistent with a large number of specific

instances, become stronger than generalizations which are consistent with only a few instances. The

effect of this successful application of generalizations is that they have a higher degree of memorial

strength than specific patterns encountered. This greater strength is reflected in the higher

probability that a generalization rather than a specific instance will be accessed to classify instances.

In other words, the above Club 1 member descriptions would eventually be categorized by matching

the generalization about Club 1 members rather than by matching the specific patterns initially stored

for them. Anderson et al. (1979) offer a more detailed description of the mechanisms we have

outlined here.

The various schema abstraction results are easily accommodated by the generalization model. The

more distant an item is from its category prototype, the less similar it is to the majority of items and the

less likely it will be classifiable by generalizations formed from more prototypic items. The

generalization model can also account for the facilitative effect of high inter-item similarity among

training exemplars (Medin & Schaffer, 1978): If training items from different categories share a high

degree of overlap, generalizations between them will not only compete for application, but their

strength will be decremented if they miscategorize items during training. The model can also

accommodate the Rosch and Mervis's (1975) findings that an item's classification and typicality

ratings depend on its family resemblance, the degree to which it is similar to items within its category

and dissimilar to items in alternative categories. The generalization model predicts that classification

performance on transfer items equally similar to study items from alternative categories would be

poor, again because generalizations from different categories would be equally likely to match such

items.

Experiment I

Our general plan for distinguishing the generalization model and an instance-only model was to

manipulate the likelihood of forming category generalizations in two different sets of study exemplars

while holding the similarity of transfer items to the two study sets as constant as possible. In this way,
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any advantage for having studied the items which yielded generalizations would be attributed, not to a

higher degree of inter-item similarity between those items and the transfer set, but rather to the

availability of generalizations.

We also manipulated the type of transfer item. One type of transfer item could be classified by

applying category generalizations if generalizations had in fact been formed from experience with

generalizable study exemplars. The other type of transfer item was not classifiable by category

generalizations. According to the ACT theory as developed in Anderson et al. (1978), a category

generalization formed during study must completely match a transfer item in order to classify it. Given

this "full match" view, the generalization Club 7 members are single, play tennis, and work for the

government fully matches and would assign to Club 1 a transfer item such as single, Baptist, plays

tennis, works for the government, but not a transfer item such as married, Baptist, plays tennis, and

works for the government. For those transfer items which are matched by generalizations, the model

assumes that both specific instance information as well as category generalizations information would

be available to classify the items. Performance should be better on these items than on transfer items

which do not match category generalizations.

The manner in which this general design was realized in Experiment I can be illustrated best with a

small portion of the experimental materials. Subjects read 5-feature descriptions of people who

belonged to either the "Dolphin Club" or the "Koala Club." Subjects in the generalize condition

studied descriptions such as

(1) One member of the Dolphin Club is a Baptist, plays golf, works for the government, is
college educated, and is single.

(2) One member of the Dolphin Club is a Baptist, plays golf, works for a private firm, is
college educated, and is married.

From these exemplars, we anticipated that they would form the generalization that a member of the

Dolphin Club is a Baptist who plays golf and is college educated, since these are the features that

these two club members have in common. After learning to classify items like (1) and (2) into the

Dolphin Club (and other items into the Koala Club), subjects moved to a transfer task in which they

were presented with new items like

(3) This person is a Baptist who plays golf, is unemployed, is college educated, and is
divorced.
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(4) This person is a Baptist who plays tennis, is unemployed, is college educated, and is

divorced.

Description (3) is an instance of what we called a 3-overlap transfer item. It overlaps with both of the

two study items (1) and (2) on three features and, moreover, on the three features which form the

generalization (Baptist, golf, college). Therefore, we would expect transfer performance on item (3) to

be quite high, since the generalization formed from (1) and (2) matches it completely. In contrast,

description (4) only overlaps with the original study items on two features Baptist. college. While both

of these features are part of the generalization, we would exv, ct a lower probability of classifying this

item as a Dolphin Club member, since a generalization must match an item perfectly to be used.

Therefore, a 2-feature overlap with a generalization that requires three features should not help.

The other study condition was called the control condition. Rather than studying a pair of items like

(1) and (2), subjects might study

(5) One member of the Dolphin Club is a Baptist who plays golf, works for a private firm, is
high school educated, and is divorced.

(6) One member of the Dolphin Club is a Baptist who plays golf, works for the
government, is college educated, and is married.

Note that these study pairs only overlap on two features, Baptist and golf. According to the exact

model put forth in Anderson et al. (1979), this 2-feature pattern would not emerge as a category

generalization because it involves less than 50% of the original features. After learning to classify

these items, subjects in the control condition were asked to judge the same transfer items as subjects

in the generalize condition. Note that transfer item (3) is still a 3-overlap item for subjects who have

studied items (5) and (6). It overlaps with (5) and (6) on three features, but a different set of three

features for each study item (with (5) on Baptist, golf, divorced, and with (6) on Baptist, golf, college).

According to the view that inter-item similarity governs classification judgment. performance on (3)

should not differ depending on whether subjects studied (1) and (2) or (5) and (6), since the overlap of

transfer item with study items is the same. However, the generalization point of view predicts an

advantage for having studied items (1) and (2), which offered a 3-feature generalization for classifying

(3), whereas (5) and (6) do not. Subjects studying items such as (5) and (6) would have to rely on their

memory for these specific instances to classify the transfer item (3). To reiterate, transfer item (3) is

equally similar to the generalize study items (1) and (2) and to the control study items (5) and (6), but
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in the generalize condition, it also matches a category generalization. Note also that transfer item (4)

overlaps with (5) and (6) on two features (but a different set of two features for each). Thus (4) is a 2-

overlap item in the control condition as well as in the generalize condition.

The other factor manipulated during learning was whether subjects saw pairs like (1) and (2) or like

(5) and (6) close together in the study sequence of study items or randomly spread apart. This was

the blocked versus random presentation manipulation. We expected the transfer performance of

generalization subjects to be better in the blocked condition than in the random condition: If

generalizable pairs are close together, they are more likely to be simultaneously available in a working

memory for patterns. Generalizable patterns must be in this working memory for the generalization to

be formed. In contrast, we did not predict any particular difference between blocked and random

conditions with control study materials.

To summarize, the ACT generalization model predicted performance to be best in the generalize-

blocked condition on 3-overlap transfer items, since these items are classifiable by category

generalizations, and equally poor on all other types of transfer items. An instance-only model predicts

no effect of generalize versus control study material, nor does it predict an advantage for blocking.

While it would predict an advantage for 3-overlap versus 2-overlap transfer items, it does not predict

that this effect would vary with study material (generalize versus control) or blocking. In contrast, the

generalization model predicts an interaction of study material with transfer item type, with the largest

effect of 3-overlap versus 2-overlap transfer items for subjects in the generalize-blocked condition.

Method

Subjects. Eighty members of the Carnegie-Mellon University community served as subjects. They

received Psychology course credit and/or $3.00 an hour for their participation. Twenty subjects were

used in each condition: generalize-blocked, generalize-random, control-blocked, control-random.

Subjects were randomly assigned to one of the four experimental conditions upon their arrival for the

experimental session, which lasted approximately two hours.

Materials and Design. The stimuli were 5-feature descriptions of people to be classified members of

one of two clubs. Each feature had four possible values. The five features and their values were: job:

(1) unemployed, (2) self-employed, (3) government, (4) private-firm: marital status: (1) single, (2)

married. (3) divorced, (4) widowed: religion: (1) Catholic, (2) Jewish, (3) Episcopalian. (4) Baptist;
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hobby: (1) tennis, (2) golf, (3) chess, (4) bowling; education: (1) grammar school. (2) high school, (3)

college, (4) trade school. Each stimulus item can be described symbolically as five digits, one for

each feature, with each digit ranging from 1-4 to indicate the specific value of each feature. Given the

above assignment of digits to values, for example, the item 43211 could correspond to the description

private-firm, divorced. Jewish, tennis, grammar school. The design of the study and transfer material,

given in Table 1, was specified in terms of these abstract numbers rather than the specific feature

values. Independently for each subject, the values of each feature were randomly re-assigned to the

digits 1 through 4. The order of the features in the description was also randomly determined for each

subject. This means that for one subject, the 11114 item from Table 1 might have been instantiated as

government, single, Baptist, high school, and chess while for another subject it might have been

instantiated as Baptist, golf, private-firm, college, and married. Thus, each subject had his or her own

randomly generated set of materials.

Table 1 schematically illustrates the stimuli and design of the experiment. A 2 (study set) X 5 (test

item type) X 2 (presentation order) design was used. Study set and presentation were varied between

subjects. Table 1 shows items from the two study sets, the generalize set and the control set. Pairs of

items in the generalize set yielded 3-feature generalizations. The four Club 1 generaliz ttions were 11-

1-, 1--22. 4--11, and 22-4-. The pairs of study items in the control condition shared only two features

in common. For both study sets, there was no value on any feature which could perfectly predict club

membership. The values 1 and 2 were diagnostic of Club 1, since they occurred more frequently on

each feature than the values 3 and 4. Club 2 items were constructed by interchanging 1's and 4's with

each other and 2's and 3's with each other, so that the values 3 and 4 were diagnostic of Club 2. The

third feature was irrelevant witn respect to club membership.

Since the critical aspects of the design rest on the relationships between the study item sets and the

test items, it is worthwhile to work through an example group of items. The two study sets were

constructed so that pairs of items in each set were equated for the amount of overlap they had with

pairs of transfer items. The four types of transfer items are defined with respect to a study pair.

Transfer items can be classified according to two characteristics of their relationship to their

corresponding study pair: amount of overlap (either three features or two features) and the number of

diagnostic values (either three values or two values). Overlap was the number of features for which
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Table 1
Experiment I:

Generalize and Control Condition

Study Items and Transfer Items

Study Items

Generalize Control

Club 1 Club 2 Club 1 Club 2

11114 44441 11112 44443

11212 44343 11223 44332

12122 43433 13122 42433

13222 42333 24222 31333

42311 13244 21311 34244

44411 11144 42411 13144

22343 33212 22444. 33111

22441 33114 42342 13213
Transfer Items

3-1 (3-overlap) 3-1 (2-overlap) 2-2(2-overlap) 2-2(3-overlap)

Club 1 Club 2 Club 1 Club 2 Club 1 Club 2 Club 1 Club 2

11313 44242 12413 43142 14313 41242 14113 41442

11413 44142 12313 43242 14413 41142 14213 41342

14322 41233 41422 14133 14323 41232 14123 41432

14422 41133 41322 14233 14423 41132 14223 41332

41111 14444 13111 42444 41131 14424 41331 14224

41211 14344 13211 42344 41231 14324 41431 14124

22142 33413 12141 43414 23142 32343 23442 32112

22242 33313 12241 43314 24242 31313 24342 31213
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two items had the same values. For example, the item 14322 has a three-feature overlap (3-overlap)

with the item 12122 on the first, fourth, and fifth features, since the values 1, 2, and 2, respectively, are

the same for both items. The ratio of diagnostic to undiagnostic features for these Club 1 items is

three to one (3-1), since the diagnostic values 1 or 2 occur on the first, fourth, and fifth features and

the undiagnostic value 4 occurs on the second feature. (Since the third feature was irrelevant with

respect to club membership. its value does not enter into the diagnosticity ratio.) The notation used to

describe the transfer items first specifies the ratio of relevant diagnostic values to undiagnostic values

and then the amount of overlap. The diagnosticity and overlap factors were manipulated

orthogonally, so that there were four types of.transfer items: 3-1 (3 overlap), 3-1 (2 overlap), 2-2 (2

overlap), and 2-1 (3 overlap).

To help explain the various transfer conditions, let us go through an example of each transfer item

type in Table 1. Consider the first Club 1 generalize study pair: 11114 and 11212. These two items

yield a 3-feature generalization 11-1-. The two corresponding 3-1(3 overlap) transfer items (from the

first row of transfer items in Table 1) for this study pair are 11313 and 11413. Each of these transfer

items overlaps the generalize study pair on three features which also constitute the 11-1-

generalization (11313 and 11413). The three diagnostic values in these items are the l's on the first,

second, and fourth features and the undiagnostic value is 3 on the fifth feature. Of the four transfer

item types, only the 3-1(3 overlap) transfer items were classifiable by category generalizations. In the

3-1 (2 overlap) transfer items, (12413 and 12313), the ratio of diagnostic to undiagnostic values is

three to one (diagnostic values of 1 or 2 on the first. second, and fourth features, and the undiagnostic

value of 3 on the fifth feature). However, the 11-1- generalization does not completely match these

items: They overlap on only two features (the first and the forth) with the generalize study pair 11114

and 11212. In the 2-2 (2 overlap) transfer items, 11413 and 14313, there are two diagnostic values (on

the second and fifth features). Each of these items has a 2-overlap with the generalize study pair on

the first and fourth features. For these items, category membership was equivocal on the basis of

either overlap or the number of diagnostic features. Since they were created by changing one of the

diagnostic features in the 3-1(2 overlap) items to be undiagnostic. they were assigned to the same

category to which these items belonged. The last type of transfer item, 2-2 (3 overlap), was included

to balance the manipulation of diagnosticity and overlap. For these items, however, we were able to
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create an 3-overlap with only one of the corresponding study items. Thus, the 2-2 (3 overlap) transfer

item 14113 has a 3-overlap with the generalize study item 11114, but not with the other study item

11212. The other 2-2(3 overlap) transfer item from this pair, 14213, has a 3-overlap with 11212 but not

with 11114.

The diagnosticity and overlap characteristics of the transfer items are also true with respect to the

control study set. For example, the 3-1(3 overlap) transfer items 11313 and 11413 overlap the first

control study item, 11112. on the first, second, and fourth features and with the second control study

item, 11223, on the first, second, and fifth features. Thus, these two transfer items share three

features with both items in their respective control study pair as they did with both items in their

corresponding generalize study pair. The critical difference is that the 3-overlap with the generalize

study pair matched a category generalization, whereas the 3-overlap with the control study pair did

not. A comparison of this control study pair with its other transfer items will indicate that the same

relations described above for the generalize study set hold for the control study set.

There were 16 items in each study set and in each transfer item type, half Club 1 members and half

Club 2 members.

For blocked presentation, the 16 study items were divided into four groups of four items each. Each

group consisted of one Club 1 study pair and one Club 2 study pair. The order of presentation within

each group of four items was permuted and the final sequencing of the four groups for study was

randomly determined. This method assured that, in the generalize condition, generalizable items

were separated by at most two intervening items. Random presentation was realized as a pseudo-

random ordering of the items using a method similar to the one described above for blocking. The

difference was that the Club 1 items and the Club 2 items combined into a group of four were selected

from different study pairs. The actual ordering of the items differed from trial to trial within the

constraints of the blocking and random ordering algorithms.

Apparatus. The experiment was controlled by a POP 11/34 computer. Subjects were seated in

individual rooms, each of which contained a CRT screen on which the stimuli were displayed.

Procedure. The experiment was divided into two phases, a study phase and a test phase. For the

study phase. subjects were told that their task was to learn to classify 16 people as either "Dolphin

Club" or "Koala Club" members on the basis of their description (club names were chosen to



Generalizations and Schema Abstraction
13

correspond to the terminal response keys "d" and "k"). To encourage subjects to attend to all five

features, they were told that club membership was determined in a complex fashion and that there

was no bias with respect to membership on the basis of a single feature. They were also encouraged

not to formulate and test hypotheses during learning, but to concentrate on memorizing each

description with its club assignment. The study items were presented in blocks of 16. One pass

through all 16 items constituted one trial. The learning criterion was set at one correct pass through

all the 16 items, i.e., one 100% accurate trial. Subjects kept cycling through the 16 items until they

reached this criterion.

The study items were presented one at a time in the middle of the terminal screen. Subjects hit

either "d" or "k" to classify a person as a Dolphin Club member or a Koala Club member,

respectively. As soon as a response was entered, feedback of the form "Right, Dolphin (Koala) Club"

or "Wrong, Dolphin (Koala) Club" appeared on the screen. The description, the subject's response,

and the feedback remained on the screen for 10 seconds. The screen then erased and the next item

was presented. A 10 second response-time limit was set. If the subject did not classify the item within

10 seconds, the correct club membership appeared, followed by the 10 second study time. Subjects

were informed that failure to respond within 10 seconds counted as an error. At the end of each pass

through the 16 items, subjects were told their accuracy for that trial. Rest breaks were spaced after

every fourth trial.

After reaching the learning criterion, subjects began the test phase. They were told their task was

to classify a new set of people as quickly as possible without sacrificing accuracy. Both the study

items and the transfer items were presented during the test phase in a different random order for each

subject. The test items were presented one at a time in the center of the screen and subjects hit

either "d" or "k" to classify the description. After the subject classified the item, the word

"confidence" appeared on the screen. Subjects assigned a confidence rating to their judgment,

ranging from 1 ("not at all confident") to 5 ("absolutely confident"). Subjects were informed that the

confidence rating was not timed and were encouraged to make sure it accurately reflected how

confident they felt about their judgment. The description and the subject's response remained on the

screen until the confidence rating was made. The screen then erased and the next item was

presented. Accuracy and confidence ratings were recorded for each classification.
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Results

The mean number of trials to criterion in the study phase was: 12.05 for generalize-blocked; 13.50

for generalize-random; 16.95 for control-blocked; and 15.85 for control-random. The effect of study

set was significant [F(1,76) = 6.3, p = .014]. Newman-Keuls tests indicated that the generalize-

blocked and the control-blocked conditions differed significantly, but the difference between the

study set conditions with random presentation was not significant by this test.1 Although learning in

the generalize-blocked condition was faster than in the generalize-random condition in the predicted

direction, neither the blocking manipulation nor its interaction with study set was significant [F's(1,76)

< 1.0]. Since both study sets had equivalent ratios of diagnostic to nondiagnostic values on each

feature, faster learning in the generalize conditions could not be attributed to the utilization of

independent, diagnostic cues.

Confidence scores were computed as the mean of a subject's confidence ratings on correct

classifications minus his confidence ratings on incorrect classifications for a given test item type.

Thus, confidence scores range from -5 to + 5. Accuracy on the study items at retest for generalize-

blocked was 88%, for generalize-random, 85%, for control-blocked, 81%, and for control-random,

79%. The mean confidence ratings of study items in these four conditions was 3.16, 3.38, 2.73., and

2.84, respectively. While suggestive, the variation among these conditions on accuracy and

confidence was not significant. The less than perfect performance on study items after reaching

criterion during study probably reflects both successful guessing to reach study criterion and the

subject's forgetting of his or her decision rules in the face of interfering transfer items.

Table 2 presents the mean accuracy and confidence rating for each transfer item type within each

condition. Analyses of both the accuracy and confidence data for transfer items revealed a

significant advantage for the generalize condition over the control condition [F's(1,76) = 26.1 and

24.5, respectively, p < .0011. For every transfer item type, subjects in the generalize condition were

more accurate and more confident than subjects in the control conditions. There was a significant

effect of type of transfer item on accuracy [F(3,228) = 70.6, p < .0011 and confidence [F(3,228) =

84.3, p < .001]. Newman-Keuls tests on both the accuracy and confidence means revealed that all

pairwise comparisons of item types differed significantly except the comparison of 2-2(2 overlap)

All Newman-Keuls tests reported were significant at the .05 level.
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Table 2

Experiment 1:

Mean Accuracy and Confidence Scores on Transfer

Items as a Function of Study Material and Presentation Order

Generalize Control

Blocked Random Blocked Random Mean

Accuracya

3-1 (3-overlap) 79 77 68 69 73

3-1 (2-overlap) 70 71 56 64 65

2-2(3-overlap) 58 55 44 47 51

2-2(2-overlap) 54 57 44 43 50

Mean 65 65 53 56 60

Confidence

3-1 (3-overlap) 2.43 2.53 1.49 1.83 2.07

3-1(2-overlap) 1.66 1.77 0.57 1.37 1.34

2-2(3-overlap) 0.63 0.45 -0.47 -0.24 0.09

2-2(2-overlap) 0.51 0.56 -0.41 -0.57 0.03

Mean 1.31 1.33 0.30 0.60 .88

apercent correct
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items and 2-2(3 overlap) items. The predicted study set by transfer item interaction did not occur.

The blocking manipulation had no appreciable effect on either accuracy or confidence nor did it enter

into any significant interactions.

Discussion

The results of Experiment I indicate that transfer to new category exemplars is facilitated when

studied exemplars yield generalizations. In addition, the learning process itself is facilitated when

generalizations can be formed between items being learned. The instance-only model cannot

account for the effects of generalization on transfer performance. However, the generalization theory

is not unequivocally supported, since we failed to find an interaction of study set with transfer item

type. For both the generalize and control conditions, classification performance was a direct function

of similarity to studied exemplars: The less similar transfer items were to studied items, the worse

classification performance was. Under the view that a generalization must match a test item perfectly

to apply, the generalization theory would predict good performance on the 3-1(3) transfer items, to

which the category generalizations apply, and equally poor performance on all other transfer item

types, to which the generalizations do not apply.

A careful post-experimental examination of the stimuli uncovered some unintended variation.

Although the test items had satisfied our overlap constraints with the intended study pairs, they had a

number of spurious overlaps with other study pairs. For example, while a 2-overlap item did in fact

have only 2-features in common with each of its corresponding study items, it may have overlapped

on three features with some other study items. To assess the extent of these spurious overlaps, we

computed an overlap score for each test item to the generalize set and to the control set in the

following manner. Each transfer item had two overlap scores. Its positive overlap score represented

how similar it was with study items in its assigned category. Its negative overlap score represented

how similar it was with study items in the alternative category. For each transfer item, we tabulated

the frequency of 5-, 4-, 3-, 2-, and 1-overlaps it shared with all the study items in its assigned club

(e.g., each Club 1 transfer was compared with all the Club 1 study items). Using the metric advocated

by Medin and Schaffer (1978), these frequencies were weighted by th3 square of the amount of

overlap they represented (e.g., the number of 3 overlaps were weighted by 9. the number of 2 overlaps

by 4, and so on) and summed. This was the transfer item's positive overlap score, its similarity to
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Table 3

Experiment 1:

Mean Overlap Scores for Study Items and

Transfer Items as a Function of Study Condition

Study Condition

Generalize Control

Test Item

Studya  22.6 23.5

3-1(3-overlap) 17.2 15.1

3-1(2-overlap) 10.1 2.7

2-2(3-overlap) 17.7 2.5

2-2(2-overlap) 0.5 -0.5

aThis score is a measure of the amount of interitem similarity among the study items themselves.
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study items in the category to which it was assigned. A transfer item's negative overlap score was

computed in the same way, except that the transfer item was compared with study items in the

alternative club (e.g., each Club 1 transfer was compared with all the Club 2 study items). A transfer

item's final overlap score was the difference between its positive and negative overlap scores. Each

transfer item had an overlap score for both the generalize study materials and the control study

materials.

Table 3 gives the mean overlap score for each transfer item type with the generalize study set and

with the control study set. The means for the study items represent their inter-item similarity. Note

that, using this metric, the control study items had virtually the same amount, if not more, inter-item

similarity than did the generalize items. Given these equivalent inter-item similarity scores for the two

types of study materials, an instance-only model would be at a loss to explain the significantly faster

learning of generalize study items.

To determine whether our results would stand with these spurious overlaps taken into account, we

performed analyses of covariance using transfer items as the random factor and the individual

transfer item overlap scores as the covariate. The same pattern of results emerged with these

covariance analyses. Both study set and item type significantly affected accuracy [F(1,59) = 6.3, p =

.015, and F(3,59) = 21.7, p < .001]. The interaction did not approach significance. The effect of these

factors was significant with respect to confidence ratings as well [F(1,59) = 7.5, p = .008 and F(3,59)

= 20.3, p < .001]. Consistent with the analyses of variance, generalize-condition subjects were more

accurate and confident across item types than were control-condition subjects, and performance on

transfer items decreased with decreasing similarity to studied items.

Experiment I did find an effect of generalize versus control study materials on subsequent transfer

classification performance. The next experiment will focus on the effect of blocked versus random

presentation and the third experiment will focus on the effect of generalize versus control study

materials. By examining each of these factors one at a time, we were able to avoid the design

constraints that led to the large amount of uncontrolled variation in overlap between study items and

transfer items in Experiment I. In addition. by focusing on a single factor at a time, we were able to

perform a more powerful manipulation of each variable and in addition, get the added statistical

power of a within-subjects design.
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Experiment II

In Experiment II, we contrasted two generalize conditions, one in which forming generalizations

might be facilitated by blocking and one in which forming generalizations was hindered by random

presentation of instances. To enhance the effect of blocking, we increased the ratio of items to

generalizations, so that a given generalization accounted for three exemplars per category rather

than just two. The strength of the resulting generalizations should be greater than in the previous

experiment and the potential for blocking to have an effect should be greater. To increase the

statistical power of the experiment, we made the presentation-order manipulation a within-subjects

factor by running a two-phase experiment. In phase 1, subjects studied generalizable items

presented either blocked or randomly. In phase 2, subjects studied a different set of generalizable

materials in the alternative presentation order.

Method

Subjects. Forty-three members of the Carnegie-Mellon University community received Psychology

course credit and/or $3.00 an hour for their participation in the two-hour experiment.

Materials and Design. Two sets of stimulus items were used to create 5-feature descriptions of

people to be classified as Dolphin or Koala Club members and of "space invaders" to be classified as

"friendly" or "hostile." Two sets were constructed to be used in the two phases of the experiment so

that the form of the generalizations (i.e. which of the five fetures comprised the generalizations)

would be different in each of the two phases (see Table 4 for stimulus set A and the Appendix for

stimulus set B).

Each feature had six values. The club member features and values were: job: unemployed, self-

employed, government, private-firm, military, retired; religion: Catholic, Jewish, Episcopalian, Baptist,

Mormon, Lutheran; hobby: stamps, coins, painting, gardening, chess, reading; musical 'a-ite:

classical, jazz, rock, disco, folk, country; sport: volleyball, basketball. bowling, squash, racquetball,

handball. The space invader features and values were: color: purple, red. blue, green. yellow, brown;

skin: metallic, furry, spiny, scaly, translucent, luminescent; appendage: claws, antennae, horns,

wings. tentacles, tail; home planet atmosphere: radon. neon. helium. xenon. argon, krypton; base of

operations--Venus. Mars, Jupiter, Saturn, Uranus. Pluto. As in Experiment I, the ordering of features

in the description and the assignment of descriptive values to numeric values was randomly
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Table 4

Experiment I:

Set A Generalize Study Items and Transfer Items

Study Items

Category 1 Category 2

11132 44423

11144 44411

11121 44434

14312 41243

24412 31143

44112 11443

32223 23332

43223 12332

21223 34332

Transfer Items

4-overlap 3-overlap 2-overlapa

Category 1 Category 2 Category 1 Category 2 Category 1 Category 2

11111 44444 11115 44445 *12113 *43442

11114 44441 11116 44446 *13113 *42442

11134 44421 *14224 *41331

14212 41343 54212 51343 12214 43341

24112 31443 54612 51643 13211 42344

24212 31343 22114 33441

22223 33332 15223 45332 23114 32441

12223 43332 26223 36332 24141 31414

13223 42332 23214 32341

a~trssindicate items which partially match a category generalization
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determined for each subject. There were nine items in each category. Study items were generated in

sets of three. The three items in a set shared three features in common. Thus, there were three

generalizations per category. The three category 1 generalizations were: 111--, -4- 12, and -223. The

corresponding category 2 generalizations were 444--, -1-43, and -332.

Three types of transfer items were constructed: 4-overlap, 3-overlap. and 2-overlap. The 4-overlap

items shared the generalization yielded by one of the study set triplets plus a fourth feature with sorre

of the items in the triplet. For example, the study item triplet 11144, 11121, and 11132 yields the

generalization 111--. The 4-overlap item 11134 shares the 111-- generalization with each of these

three study items. It also overlaps the first study item on the fifth feature and the third item on the

fourth feature. There were 18 (nine per category) 4-overlap transfer items.

The 2-overlap transfers overlapped on only two features with any study item in their respective

category. A computer program generated all possible 2-overlaps items for each stimulus set. From

this set. we selected the items which had a relatively high (four or more) number of positive 2-overlaps

and a relatively low (two or fewer) number of negative 2-overlaps. Some of these 2-overlap transfers

had the property that the two features they shared with a study item matched part of a category

generalization. For example, the three study items 11144, 11121, and 11132 have the generalization

111-- and the 2-overlap transfer item 12113 overlaps on the first and third features of each of these

items and with the generalization as well. Two overlap items which had this property were designated

as 2-overlap partial matches (2(PM)-overlaps), since they matched two-thirds of a category

generalization. In contrast, a 2-overlap item such as 12214 also overlapped three study items (11144,

14312, and 32223) on two features, but none of these 2-feature overlaps partially matched any of the

category generalizations. For stimulus set A, 6 out of 18 2-overlap transfers were partial matches. For

stimulus set 8, 10 out of 18 2-overlap transfers were partial matches. The partial matches are starred

in Table 4 and in the Appendix.

A third type of transfer item, 3-overlap transfers, was also included. These items matched one of

the 3-feature category generalizations yielded by one study item triplet. However, they were

qualitatively different from the other transfer items since one of their non-overlapping features had

values which were not used in any of the study items. In other words, the study items used only four

of the six possible values on a given feature, but the remaining two values were used to construct the
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3-overlap transfer items. For example, the 3-overlap item 11115 overlaps each of the study items

11144, 11121, and 11132 on the 111-- generalization, but the value 5 on the fifth feature was never

used in any study item. It was necessary to use new values in order to construct items which

overlapped on only the 3-feature generalization for one category while not overlapping on three

features with an item in the alternative category. Since 3-overlap transfers contained never-studied

values, they were always presented as the last items in the transfer test. This was done to insure that

performance on 4- and 2-overlap transfers was uncontaminated by any "surprise" effects these items

might generate. There were 12 (six per category) 3-overlap transfers in each stimulus set A and B. To

summarize, category generalizations could be used to classify 4-overlap and 3-overlap transfer items;

according to the full match view, they would not be helpful in classifying either 2-overlap or 2(PM)-

overlap transfer items.

The presentation factor (blocked versus random) varied within subjects. In one phase, a subject's

study items were blocked and in the other, the study items were presented randomly. For blocked

presentation, two study item triplets, one from category 1 and one from category 2, were randomly

selected to be combined as a group of six items, whose order was then permuted. A seconr4 pair of

study item triplets was selected, combined, and permuted as a group of six. The final pair of triplets

were then permuted. These 18 study iems were then presented on one trial in this order. This

method assured that the three items yieiC'ng a given generalization were clustered relatively close in

the presentation sequence. For random presentation, items were also sorted into three groups of six,

but the items in a given group of six came from each of the six different triplets. None of the three

category 1 items in a group of six were from the same category 1 triplet, so they did not yield any

category generalizations among themselves. Thus, there were no generalizable pairs in any block of

six items. The order of the six items in each group was permuted and the 18 items were presented in

this order. The actual ordering of items in the blocked and random conditions varied from trial to trial,

within the constraints of their respective presentation algorithms.

Apparatus and Procedure. The apparatus and procedure were the same as described for

Experiment II. The only difference was the learning criterion. To assure that subjects would complete

both phases of the experiment in the allotted time, the learning criterion was set at two 85% correct

passes through the 18 study items. If a subject did not reach this criterion after 14 passes, she or he
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moved onto the transfer test of the phase.

Results

There were 14 cases of failing to reach the learning criterion. Six of these were due to three

subjects who did not reach criterion in either phase of the experiment. Of the remaining eight cases,

five occurred with blocked presentation and three occurred with random presentation. The mean

number of trials to criterion for learning was 8.2 in the blocked phase and 9.5 trials in the random

phase. The advantage of blocked presentation was significant [F(1,41) = 4.4, p = .0411. When the

order of phases. blocked-random or random-blocked, is considered as a between-subjects factor,

blocked-random subjects averaged 8.9 trials on their blocked (first) phase and 9.2 trials on their

random (second) phase. Random-blocked subjects averaged 9.7 trials in their random (first) phase

and 7.5 trials in their blocked (second) phase. The effect of phase order was not significant and did

not interact with presentation: Subjects always learned faster in their blocked phases than in their

random phases.

In the blocked condition, the mean accuracy on study items at retest was 79% and the mean

confidence was 2.58. For random phases, these scores were 79% and 2.56. Table 5 presents the

mean accuracy and confidence scores for transfer items.

Analyses of variance on the transfer data included the order of blocked and random phases as a

between-subjects factor. There were 21 subjects whose phase order was blocked-random and 22

subjects whose phase order was random-blocked. The 2-overlap transfer items were partitioned into

2(PM)-overlaps and 2-overlaps, making a total of four transfer item types. There was a main effect of

presentation on accuracy [F(1,41) = 5.2, p = .029]. Subjects' mean accuracy on transfer item was

73% in blocked phases but only 67% in random phases. The means in Table 5 show that accuracy

varied greatly as a function of transfer item type, an effect which was highly significant [F(3,123) =

31.5, p .001]. Not surprisingly, subjects were most accurate on 4-overlap transfers and least

accurate on 2-overlap transfers. Newman-Keuls tests on the blocked-phase accuracy means

indicated that accuracy on each of the two types of high (4 and 3) overlap transfers was significantly

higher than accuracy on each of the two low (2 and 2(PM)) overlap transfers. Similarly. random-

phase accuracy means for 4- and 3-overlap items were significantly higher than accuracy on all the 2-

overlap items. It is interesting to note that subjects' accuracy on on 2(PM).overlap items, which
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Table 5

Experiment I1:

Mean Accuracy and Confidence Scores on Transfer

Items as a Function of Presentation Order

Presentation Order

Blocked Random Mean

Accuracy a

Transfer Item

4-overlap 83 78 81

3-overlap 78 72 75

2(PM)-overlap 69 64 67

2-overlap 61 53 57

Mean 73 67 70

Confidence

Transfer Item

4-overlap 2.80 2.42 2.61

3-overlap 1.86 1.63 1.75

2(PM)-overlap 1.24 1.03 1.14

2-overlap 0.87 0.36 0.62

Mean 1.69 1.36 1.53

apercent correct

dim .....
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partially matched two of the three features of a category generalization, was significantly higher than

their accuracy on 2-overlap items. Apparently. having a partial overlap with the generalization led to

an advantage.

Subjects were also more confident in blocked presentation conditions, but unlike the accuracy

results, this effect did not reach statistical significance [F(1,41) = 2.81. p = .1]. There was a

significant effect of transfer item t/pe on confidence scores [F(3,123) = 39.1, p <.0011. Newman-

Keuls tests revealed that all pair-wise comparisons of confidence means for the transfer item types

were significant, with the exception of the 3-overlap and 2(PM)-overlap contrast.

Discussion

Support for the proposal that generalizations are formed during learning and utilized during transfer

comes from a number of sources in Experiment I1. First, learning was faster when generalizable items

were blocked than when they were randomly ordered. Second, transfer performance was higher in

the blocked phases than in the random phases. However, there was no interaction of presentation

mode with test item type: The effect of decreasing similarity of test items to study items was the same

in both blocked and random conditions. While blocking items may have facilitated forming

generalizations, the effect of transfer item type in the random condition suggests that some category

generalizations were formed even when generalizable items were randomly ordered. The third piece

of (unexpected) evidence which argues for the existence of generalizations is the better transfer to

2(PM)-overlap items relative to 2-overlap items. Subjects were more accurate on 2-overlap transfers

which partially matched a generalization than on those which did not, a result the generalization

model would not have predicted.

To better evaluate this advantage for partial matches to generalizations, we used two metrics to

determine whether 2(PM)-overlap items were qualitatively different from the 2-overlap items on some

other dimension besides partially matching a category generalization. First. we classified 2(PM)- and

2-overlap items according to the number of diagnostic values in each item. For stimulus sets A and B

combined, the frequency of 2(PM) overlap items with two, three, four, or five diagnostic values was 0,

4. 12, and 4. respectively. For 2-overlap items, it was 2. 12. 6. and 0, respecti, ely. We can evaluate

these frequency distributions by considering that each study item had exactly three diagnostic values:

Twenty of the 2(PM)-overlap items and sixteen of the 2-overlap items had three or more diagnostic
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values. On this measure, then, the 2(PM)-overlap transfers had a slight advantage. Second, we

computed an overlap score for each of the 2(PM)-overlap and 2-overlap items, using the method

described in Experiment I. Although each 2-overlap and 2(PM)-overlap transfer had only 2- and 1-

overlaps with the study items, this similarity measure is based on the frequency with which the

overlaps occur. The mean overlap score for the 2(PM)-overlap items, sets A and B combined, was

9.25. For the 2-overlap items, the mean overlap score was 8.0. While the differences between the

2(PM)-overlap items and the 2-overlap items on these two measures are small, they could account for

the performance differences we found. We performed an analysis of covariance using item type

(2(PM)-overlap versus 2-overlap) as the random factor and individual transfer item overlap scores as

the covariate. With the analysis, the effect of item type on accuracy approached significance [F(1,33)

= 3.6, p = .061. This analysis suggests that the 2(PM)-overlap advantage did not occur simply

because these items had more 2-feature matches with study instances than did the 2-overlap items,

but because some of those 2-feature matches also partially matched a generalization. In other words,

there seemed to be an effect for similarity to higher-order information. However, while the overall

performance differences on low overlap items which do and do not partially match category

generalizations are suggestive, the role of partial matches to generalizations in classification

judgment warrants a more controlled investigation of its own.

Experiment III

Experiment III was designed as an attempt to replicate Experiment I's result that transfer to new

items is better if studied items yielded category generalizations than if they did not. As in Experiment

I, we contrasted a generalize study set, whose items yielded 3-feature generalizations, with a control

set, whose items did not yield category generalizations. In Experiment I, there turned out to be some

differences between the two sets of material in terms of similarity between study and transfer items.

There still was an advantage for the generalize condition, covarying out this similarity, but it would be

desirable to show a generalize advantage for having studied generalizable materials which were more

equivalent to control materials in terms of inter-item similarity of study and transfer items. We

discovered that we could not generate control and generalize study material which were equally

similar to the transfer items and which satisfied overlap and cue validity constraints, if we used the

same transfer item set for both generalize and control study sets as we had in Experiment I. Instead,
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Table 6

Experiment IIl:

Study Items and Transfer Items

for Generalize and Control Conditions

Study Items

Generalize Control

Category 1 Category 2 Category 1 Category 2

11235 44325 11235 44325

11241 44314 12141 43414

12311 43244 11124 44431

12414 43141 21313 34242

23113 32442 31112 24443

24111 31444 42121 13434

31122 24433 24411 31144

41121 14434 13212 42343

Transfer Items

Generalize Control

Category 1 Category 2 Category 1 Category 2

11213 44342 11241 44314

11224 44331 12135 43425

12213 43342 21123 34432

12115 43445 11314 44241

22115 33445 41111 14444

21114 34441 32122 23433

21124 34431 23211 32344

11123 44432 14412 41143
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we designed a generalize study set and a control study set each with its own transfer item set and

endeavored to make the relation between the transfer set and the study set as equivalent as possible

for both the generalize and the control materials.

Method

Subjects. Forty members of the Carnegie-Mellon University community received Psychology course

credit and/or $3.00 an hour for participation in the two-hour experiment.

Materials and Design. The club member and space invader materials described for Experiment II

were used in conjunction with the generalize and control items presented in Table 6.

For both the generalize and control study items, there were four possible values for each of the first

four features and five possible values for the fifth feature. Category 2 was constructed from category

1 by interchanging l's with 4's and 2's with 3's. The value 1 on any feature was quite diagnostic of

category 1 and the value 4 on any feature was quite diagnostic of category 2. Except for the fifth

feature, the value 2 was somewhat diagnostic of category 1 and the value 3, of category 2. The values

2. 3, and 5 on the fifth feature were not diagnostic of either category.

There were eight study items per category. For the generalize condition, pairs of study items were

constructed to overlap on three features. The four category 1 generalizations were: 112--, 12-1-, 2-11-

, and -112-. For the control condition, study items were also constructed in a pairwise manner. The

items in a control study-pair shared only one feature in common. Using the metric described in

Experiment 1, the mean overlap score for the generalize study items, a measure of their inter-item

similarity, was 28.8; for control study items, the mean overlap score was 25.1.

Only one type of transfer item, 3-overlap, was used; there were eight 3-overlap transfer items per

category. One pair of transfer items was constructed for each pair of study items. For the generalize

study set, each of the transfer items in a pair overlapped each of the items in its corresponding study

pair on three features. These three features were the generalization yielded by the study pair. For

example, the study pair 11235 and 11241 overlap on the first, second, and third features, yielding the

generalization 112--. The two transfer items 11213 and 11224 overlap each of the study items on the

first three features and are classifiable by the 112-- generalization. A transfer item pair overlapped on

three features only with the items in its corresponding study pair, i.e., there were no spurious 3-

feature overlaps between a transfer item and a third study item.
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Pairs of transfer items were constructed in the same way for the control study set. Each transfer

item in a pair overlapped with two study items on three features in its corresponding study pair, but a

different three features for each item. For the control study pair, 11235 and 12141, the transfer item

11241 overlaps the first study item on the first. second, and third feature and with the second study

item on the first, fourth, and fifth features. The second transfer item 12135 overlaps the first study

item in the first, fourth. and fifth feature and on the second item on the first, second and third item. As

in the generalize study set, a control transfer pair shared three features only with its corresponding

study pair.

An overlap score was computed for each transfer item by tabulating the frequency of 3-, 2-, and 1-

overlaps with study items in its assigned category (positive overlap) and with study items in the

alternative category (negative overlap). As in Experiment I, we multiplied the frequency of each

overlap type by the square of the overlap, and summed the results. The positive overlap score minus

the negative overlap score gave the final overlap measure. The mean overlap score for the generalize

transfer items was 23.6 and for the control transfer items, it was 18.6. Since this difference was larger

than we had hoped to achieve, transfer item overlap scores were subsequently used as the covariate

in analyses of covariance on the recall data.

Study materials, generalize or control, was varied within subjects. The experiment was run in two

phases. The order of phases, generalize-control or control-generalize, and the assignment of club

member or space invader descriptions to generalize and control materials, was counterbalanced

across subjects.

The generalization model predicts better transfer performance in the generalize condition, in which

transfer items are classifiable by category generalizations, than in the control condition. An instance-

only model would predict no difference between generalizable and control conditions on transfer

performance.

Apparatus and Procedure. The procedure was identical to that of Experiment II. Both generalize

and control study items were presented in a blocked order, using the method described in Experiment

I1. After each transfer test, subjects filled in brief questionnaires in which they described (a) what

strategies they used to learn the study items and (b) their impressions of what determined category

membership.
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Results and Discussion

There were 26 cases of failure to reach learning criterion. Five subjects did not reach criterion for

either their generalize or control phase. Of the remaining 16 cases, four occurred in the generalize

phase and twelve occurred in the control phase. Subjects took 9.55 trials to reach learning criterion

with generalize materials and 10.68 trials with control materials. This effect approached significance

[F(1,38) = 3.65, p =.06]. Learning was faster in the second phase, regardless of materials, as

revealed by a significant study material by phase order interaction [F(1,38) = 13.01, p =.0011.

Generalize-control subjects took 10.3 trials in their first (generalize) phase and 9.3 trials in their

second (control) phase. Control-generalize subjects took 12.1 trials in their first (control) phase and

8.8 trials in their second (generalize) phase, The speed-up across phases for subjects going from

generalize to control materials was 1.0 trials, but for subjects going from control to generalize

materials, the decrease in learning time was more than three trials. These learning phase data

replicate the findings of Experiment I: Learning was facilitated when the study items afforded category

generalizations, even when the two sets of study materials were approximately equivalent in terms of

inter-item similarity.

For generalize materials, the mean accuracy and confidence on study items at retest was 82% and

2.87, respectively. For control materials, these scores were 82% and 2.91.
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Table 7

Experiment IIl:

Mean Accuracy and Confidence Scores on Transfer

Items as a Function of Study Set and Phase Order

Phase Order

Generalize-Control Control-Generalize Mean

Accuracy
a

generalize 74 82 78

control 72 70 71

Confidence

generalize 2.11 2.90 2.50

1 control 1.95 1.79 1.85

apercent correct

La
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Table 7 presents the mean accuracy and confidence scores as a function of phase-order and

materials for the transfer items. There was a main effect of item type (study versus transfer) on

accuracy [F(1,38) = 25.1, p < .0011. Not surprisingly, subjects were less accurate on new transfer

items than on studied items, indicating some effect of memory for specific instances. While subjects

were equally accurate on generalize and control study items, they differed significantly in accuracy on

the 3-overlap transfer items as a function of study material (p < .05). With generalize materials,

subjects were 78% accurate on transfer items, while with control materials, they were 71% accurate

on transfer items. This interaction of study materials with test item type was significant [F (1,38) =

4.6, p = .038]. Phase order did not significantly affect accuracy, but the phase order by study

materials interaction approached significance [F(1,38) = 3.5, p < .06]. This reflected the trend that

control-generalize subjects were 12% more accurate in their second (generalize) transfer test than

they were in their first (control) transfer test, whereas generalize-control subjects were only 2% more

accurate in their second (control) phase than in their first (generalize) phase. At the very least, these

data suggest that the benefit of practice with the task is contingent on the nature of the materials.

Similar effects emerged for confidence ratings. The item effect was significant [F(1,38) = 30.3. p =

.001]. The mean confidence score on transfer items for generalize materials, 2.50, was significantly

higher than the mean confidence score on these items given control materials, 1.85 (p < .05). The

interaction of study materials with item type was significant [F (1,38) = 8.8, p = .005]. Study material

interacted with phase order [F(1,38) = 6.2, p = .017]. The mean increase in confidence on the

second phase relative to the first was 1.11 for control-generalize phase order, but only .16 for the

generalize-control phase order.

As in Experiment I, we performed an analysis of covariance using items as the random factor with

the overlap scores serving as the covariate. Under this analysis, the adjusted accuracy and

confidence means for the transfer items in the generalize and control phases still differed significantly

(p < .05).

When we examined the subjects' post-experimental reports, we found little evidence for awareness

of generalizations or parts of generalizations. There was certainly no case in which a subject

reported all six 3-feature generalizations which occurred in his or her study items. When asked what

determined category membership, most subjects listed single features. A few subjects showed

__ M /
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sensitivity to configurations of features or contingency relationships (e.g., "Dolphin members were

Lutheran and collected stamps, unless they liked jazz... then they were Koalas"). We checked each

subject's report for the generalize phase to see how well their rules matched the six generalizations

which actually appeared in his or her study items. Out of the 30 subjects for which we had protocols,

one subject reported two complete generalizations; another subject mentioned one. There were

seven subjects reporting two-thirds of some of the generalizations. However. these subjects, like the

majority, also reported feature combinations which did not correspond at all to the generalizations. In

general, subjects were either unaware of the category generalizations or unable to articulate them.
General Discussion

Perhaps the best testimony to the success of these experiments is that none of the theories we

reviewed in the introduction has emerged unscathed. Experiments I and III provided ample evidence

for the advantage of generalizations during initial learning and in transfer. While Experiment II did not

directly contrast a control versus generalize condition, the contrast between blocked and rat-dom

presentation would only have impact if subjects were forming generalizations. This means that

subject performance is not just a direct function of similarity between study instances and test

instances. Rather, inter-item similarity among the study items is important in creating generalizations

that can be used to categorize transfer items. These results, as well as the advantage in both speed

of learning and transfer of the generalize condition over the control condition rule out the pure

instance-only theories (Medin & Schaffer, 1978).

The prototype models do suppose that central tendencies are extracted and used to categorize test

instances. However, they assume a single central tendency which implies that distance from the

central tendency should be the only relevant variable. Numerous experiments have already

disconfirmed this prediction (e.g., Hayes-Roth & Hayes-Roth, 1977: Medin and Schaffer, 1978) as

commented upon in the introduction. Experiment I showed that, for our particular paradigm too, there

is an effect of degree of overlap with individual study instances, holding number of diagnostic features

(i.e.. central tendency) constant.

Our results also rule out most of the feature-set models (Reitman & Bower. 1973: Neumann. 1974;

Hayes-Roth and Hayes-Roth, 1977) in that they have no role for a generalization process. Both

Neumann's (1974) model and Reitman and Bower's (1973) model were designed to predict
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recognition ratings; neither makes classification predictions. Hayes-Roth and Hayes-Roth's (1977)

property set model, which is most similar to the generalization model we tested, does not predict the

differences we found between generalize and control conditions. Their model predicts classification

on the basis of a transfer item's most diagnostic property set. According to their model, an item's

property sets are the powerset of all its values; each of our 5-feature items had 31 property sets. To

make property set model predictions for our Experiment III task, we computed the following for each

property set for each transfer item: (a) tabulated its frequency of occurrence among category 1

exemplars and among category 2 exemplars, (b) formed two ratios: the frequency of category 1

occurrences over all occurrences and the frequency of category 2 occurrences over all occurrences,

and (c) found the largest ratio of all those computed--this signified the most diagnostic property set. If

it is a category 1 ratio, the model predicts a category 1 classification for the transfer item. If it is a

category 2 ratio, the model predicts a category 2 classification. If there is a tie for the largest ratio

across categories, classification is not predicted.

In Experiment Ill, there are 12 generalize transfer items with a most-diagnostic property set for the

correct category. There are 10 such control items. Performance is 81% accurate on these generalize

items and 73% on these control items. Thus, when we consider only those transfer items for which

the property set model makes a classification prediction, it still cannot account for the difference

found between generalize and control conditions.

So this leaves only the ACT model. However, that theory as set forth in Anderson et al. (1979) also

has numerous problems. A major difficulty is that it does not successfully classify a transfer item

unless it is perfectly matched by some study item or by a generalization formed from study items. This

leaves the theory at a loss to explain many results in the present experiments, such as how subjects

could successfully categorize transfer items at all in the control condition where there were no

generalizations or how they could at all categorize test items in the generalize condition that only

partially overlapped with the generalizations. This produced the failure to obtain an interaction

between treatment and transfer item types in Experiments I and I1.

It seems that the major inadequacy with the ACT theory as formulated by Anderson et al. (1979) is

its failure to allow items to be classified on the basis of partial matches. In response to these results

and other considerations, the ACT pattern matcher has been augmented to permit partial matches to
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both specific instances and to category generalizations. This means that there are two bases for

similarity to lead to transfer in these categorization tasks. First, inter-item similarity can lead to

category generalizations at study. In addition. similarity between transfer items and either study items

or higher-order category information (generalizations) can serve as a direct basis for categorization.

In fact, the current ACT model uses the same partial matching techniques for detecting similarities

between study items to form generalizations as it uses for categorizing new items.

It is interesting here to consider the distinction proposed by Brooks (1977) between two modes of

category learning: analytic and nonanalytic. In simplified terms, a learner is said to be in analytic

mode if he or she is trying to form, test, and abstract rules about category membership. In nonanalytic

mode, the learner attends to individual items, and subsequent classification of new items is

accomplished via analogy to remembered items. This analogy approach is similar to the Medin and

Schaffer's (1978) theory, but Brooks specifies the conditions under which either mode is likely to

occur as well as their respective behavioral consequences. Since we believe we have found evidence

for both (a) abstraction of higher-order category information and (b) similarity effects to both specific

instances and this higher-order category information, it is interesting to evaluate whether our subjects

were analytic or nonanalytic learners when given generalize materials. Using the criteria Brooks

offers, we believe that, at least for Experiments I and Ill, our subjects' approach was nonanalytic.

First, the instructions emphasized the complexity of the to-be-learned categories and that no single

rule determined membership. The experimenter offered further admonitions against the testing of

specific hypotheses on successive passes through the study items, warning that this would be a

frustrating and unsuccessful endeavor. Second, memory for study items retested during the transfer

tasks was quite high. Brooks notes that one consequence of analytic processing is poor memory for

study items, since attention is devoted to uncovering consistencies among items rather than to

learning individual items. Allowing for some interference effects. our subjects classified studied items

fairly accurately, and the difference between old and new items was also reflected in higher

confidence on studied items. Third. Experiment III subjects' ability to specify rules in their post-

experimental reports was similar and poor across generalize and control conditions. For the

generalize phase. the majority of their rules bore little resemblance to generalizations actually used.

These remarks suggest that our subjects approached and executed the task in a fairly nonanalytic
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manner, regardless of the type of material they studied. Yet we found evidence for the use of

category generalizations during transfer, not just analogy to studied items. The present data suggest

that it may be both unnecessary and inappropriate for a theory of schema abstraction to choose

between rule abstraction mechanisms and analogy mechanisms. Both specific instance information

and higher-order category information may be available after nonanalytic processing of category

exemplars and an analogy, partial-matching, or some such similarity-detecting mechanism may

operate in the same way on both types of information.
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Appendix

Experiment I: Set B Generalize Study Items and Transfer Items

Study Items

Category 1 Category 2

11321 44234

11441 44114

11211 44344

43121 12434

44122 11433

41124 14431 j
22233 33322

32234 23321

12232 43323

Transfer Items

4-overlap 3-overlap 2-overlapa

Category 1 Category 2 Category 1 Category 2 Category 1 Category 2

11111 44444 11151 44454 *13112 '42443

11141 44414 11161 44464 *21112 034443

11341 44214 *21412 *34143

42121 13434 42125 13435 *22112 '33443

41122 14433 46122 16433 *24212 "31343

42122 13433 22442 33113

22232 33323 52231 53324 13243 42312

22231 33324 62231 63324 21143 34412

32231 23324 23132 32423

aAsterisks indicate items which partially match a category generalization
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The American College Testing Program
Dr. William Chase P.O. Box 168
Department of Psychology Iowa City, IA 52240
Carnegie Mellon University
Pittsburgh-_.-A 15213 1 Mr. Wallace Feurzeig

Bolt Beranek & Newman, Inc.
Dr. Micheline Chi 50 Moulton St.
Learning R & D Center Cambridge, MA 02138
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213
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Dr. Victor Fields 1 Dr. Barbara Hayes-Roth
Dept. of Psychology The Rand Corporation
Montgomery College 1700 Main Street
Rockville, MD 20850 Santa Monica, CA 90406

Dr. John R. Frederiksen 1 Dr. Frederick Hayes-Roth
Bolt Beranek & Newnan The Rand Corporation
50 Moulton Street 1700 Main Street
Cambridge, MA 02138 Santa Monica, CA 90406

Dr. Alinda Friedman 1 Dr. James R. Hoffman
Department of Psychology Department of Psychology
University of Alberta University of Delaware
Edmonton, Alberta Newark, DE 19711
CANADA T6G 2E9

1 Glenda Greenwald, Ed.
Dr. R. Edward Geiselman "Human Intelligence Newsletter"
Department of Psychology P. O. Box 1163
University of California Birmingham, HI 48012
Los Angeles, CA 90024

1 Dr. Earl Hunt
DR. ROBERT GLASER Dept. of Psychology
LRDC University of Washington
UNIVERSITY OF PITTSBURGH Seattle, WA 98105
3939 O'HARA STREET
PITTSBURGH, PA 15213 1 Dr. Steven W. Keele

Dept. of Psychology
Dr. Marvin D. Glock University of Oregon
217 Stone Hall Eugene, OR 97403
Cornell University
Ithaca, NY 14853 1 Dr. Walter Kintsch

Department of Psychology
Dr. Daniel Gopher University of Colorado
Industrial & Management Engineering Boulder, CO 80302
Technion-Israel Institute of Technology
Haifa 1 Dr. David Kieras
ISRAEL Department of Psychology

University of Arizona
DR. JAMES G. GREENO Tuscon, AZ 85721
LRDC
UNIVERSITY OF PITTSBURGH' 1 Dr. Kenneth A. Klivington
3939 O'HARA STREET Program Officer
PITTSBURGH, PA 15213 Alfred P. Sloan Foundation

630 Fifth Avenue
Dr. Harold Hawkins New York, NY 10111
Department of Psychology
University of Oregon
Eugene OR 97403

.A
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Dr. Stephen Kosslyn I Dr. Allen Munro
Harvard University Behavioral Technology Laboratories

Department of Psychology 1845 Elena Ave., Fourth Floor
33 Kirkland Street Redondo Beach, CA 90277
Cambridge, MA 02138

1 Dr. Donald A Norman
Mr. Marlin Kroger Dept. of Psychology C-009
1117 Via Goleta Univ. of California, San Diego
Palos Verdes Estates, CA 90274 La Jolla, CA 92093

Dr. Jill Larkin 1 Dr. Jesse Orlansky

Department of Psychology Institute for Defense Analyses
Carnegie Mellon University L00 Army Navy Drive
Pittsburgh, PA 15213 Arlington, VA 22202

Dr. Alan Lesgold 1 Dr. Seymour A. Papert
Learning R&D Center Massachusetts Institute of Technology
University of Pittsburgh Artificial Intelligence Lab
Pittsburgh, PA 15260 545 Technology Square

Cambridge, MA 02139
Dr. Michael Levine
Department of Educational Psychology 1 Dr. James A. Paulson
210 Education Bldg. Portland State University
University of Illinois P.O. Box 751
Champaign, IL 61801 Portland, OR 97207

Dr. Robert A. Levit 1 MR. LUIGI PETRULLO
Director, Behavioral Sciences 2431 N. EDGEWOOD STREET
The BD4 Corporation ARLINGTON, VA 22207
7915 Jones Branch Drive
McClean, VA 22101 1 DR. PETER POLSON

DEPT. OF PSYCHOLOGY
1 Dr. Charles Lewis UNIVERSITY OF COLORADO

Faculteit Sociale Wetenschappen BOULDER, CO 80309
RiJksuniversiteit Groningen
Oude Boteringestraat 1 Dr. Steven E. Poltrock
Groningen Department of Psychology
NETHERLANDS University of Denver

Denver,CO 80208
1 Dr. Erik McWilliams

Science Education Dev. and Research 1 MINRAT M. L. RAUCH
National Science Foundation P II 4
Washington, DC 20550 BUNDESMINISTERIUM DER VERTEIDIGUNG

POSTFACH 1328
Dr. Mark Miller D-53 BONN 1, GERMANY
Computer Science Laboratory
Texas Instruments, Inc.
Mail Station 371, P.O. Box 225936
Dallas, TX 75265
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Dr. Fred Reif I Dr. Richard Snow
SESAME School of Education
c/o Physics Department Stanford University
University of California Stanford, CA 94305
Berkely, CA 94720

1 Dr. Robert Sternberg
Dr. Andrew M. Rose Dept. of Psychology
American Institutes for Research Yale University
1055 Thomas Jefferson St. NW Box 11A, Yale Station
Washington, DC 20007 New Haven, CT 06520

Dr. Ernst Z. Rothkopf 1 DR. ALBERT STEVENS
Bell Laboratories BOLT BERANEK & NEWMAN, INC.
600 Mountain Avenue 50 MOULTON STREET
Murray Hill, NJ 07974 CAMBRIDGE, MA 02138

DR. WALTER SCHNEIDER 1 Dr. David Stone
DEPT. OF PSYCHOLOGY ED 236
UNIVERSITY OF ILLINOIS SUNY, Albany
CHAMPAIGN, IL 61820 Albany, NY 12222

Dr. Alan Schoenfeld 1 DR. PATRICK SUPPES
Department of Mathematics INSTITUTE FOR MATHEMATICAL STUDIES IN
Hamilton College THE SOCIAL SCIENCES
Clinton, NY 13323 STANFORD UNIVERSITY

STANFORD, CA 94305
DR. ROBERT J. SEIDEL
INSTRUCTIONAL TECHNOLOGY GROUP 1 Dr. Kikumi Tatsuoka

HUMRRO Computer Based Education Research
300 N. WASHINGTON ST. Laboratory
ALEXANDRIA, VA 22314 252 Engineering Research Laboratory

University of Illinois
Committee on Cognitive Research Urbana, IL 61801
% Dr. Lonnie R. Sherrod
Social Science Research Council 1 Dr. John Thomas
605 Third Avenue IBM Thomas J. Watson Research Center
New York, NY 10016 P.O. Box 218

Yorktown Heights, NY 10598
Robert S. Siegler
Associate Professor 1 DR. PERRY THORNDYKE
Carnegie-Mellon University THE RAND CORPORATION
Department of Psychology 1700 MAIN STREET
Schenley Park SANTA MONICA, CA 90406
Pittsburgh, PA 15213

1 Dr. Douglas Towne
Dr. Robert Smith Univ. of So. California
Department of Computer Science Behavioral Technology Labs
Rutgers University 1845 S. Elena Ave.
ew Brunswick, NJ 08903 Redondo Beach, CA 90277

L .6wo
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1 Dr. J. Uhlaner

Perceptronics, inc.

6271 Variel Avenue
Woodland Hills, CA 91364

1 Dr. Benton J. Underwood

Dept. of Psychology
Northwestern University

Evanston, IL 60201

1 Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen all, Appian Way
Cambridge, MA 02138

I Dr. David J. Weiss
N660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 DR. GERSHON WELTMAN
PERCEPTRONICS INC.
6271 VARIEL AVE.
WOODLAND HILLS, CA 91367

1 Dr. Keith T. Wescourt

Information Sciences Dept.
The Rand Corporation
1700 Main St.


